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Rapid and Brief Communication

An e$cient renovation on kernel Fisher discriminant analysis
and face recognition experiments
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Abstract

A reformative kernel algorithm, which can deal with two-class problems as well as those with more than two classes,
on Fisher discriminant analysis is proposed. In the novel algorithm the supposition that in feature space discriminant vector
can be approximated by some linear combination of a part of training samples, called “signi6cant nodes”, is made. If the
“signi6cant nodes” are found out, the novel algorithm on kernel Fisher discriminant analysis will be superior to the naive
one in classi6cation e$ciency. In this paper, a recursive algorithm for selecting “signi6cant nodes”, is developed in detail.
Experiments show that the novel algorithm is e9ective and much e$cient in classifying.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Kernel Fisher discriminant analysis has been applied to
many pattern recognition problems and its good performance
is available [1,2]. Its basic idea can be described that in-
put space is mapped into some feature space (usually non-
linear space), consequently Fisher discriminant analysis is
performed in the feature space. It is notable that in kernel
Fisher discriminant analysis any explicit mapping is not nec-
essary, because kernel trick is introduced [1]. However, it is
well known that the classi6cation e$ciency of naive kernel
Fisher discriminant analysis descends while the number of
training samples increases, and as a result its application for
some practical problems with many training samples may be
very time consuming and even impossible. Supposing that
in feature space discriminant vector can be approximated
by some expression appearing as linear combination of a
part of training samples, some algorithms have been pro-
posed to improve classi6cation e$ciency of kernel methods
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[2,3]. Nevertheless, these algorithms are only developed
for two-class problems. In this paper, a reformative algo-
rithm on kernel Fisher discriminant analysis is developed,
which is valid for two-class problems, as well as those with
more than two classes. We call the training samples, whose
linear combination may approximate well the discriminant
vectors in feature space, “signi6cant nodes”. A cursive al-
gorithm is presented to select “signi6cant nodes”. Although
the algorithm for selecting “signi6cant nodes” may be not
optimal, it is feasible and reasonable, and its computational
cost is acceptable. This paper is organized as follows. The
next section will introduce kernel Fisher discriminant anal-
ysis and its algorithm, while Section 3 will propose our
reformative algorithm. Experiments results will be given in
the last section.

2. Kernel Fisher discriminant analysis

Let {xi} denote the input space. Suppose that the feature
space is F and the corresponding nonlinear function is �,
i.e. �(xi) ∈F . Consequently, in the feature space F Fisher
criterion is de6ned by

J (w) =
w′S�

b w

w′S�
ww

; (1)
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where w is discriminant vector, S�
b and S�

w are between-class
scatter matrix and within-class scatter matrix, respectively.
Suppose that there are L classes, and the number of samples
in the ith class is li. In addition, we de6ne that the total
number of samples is l and xi

j = 1; 2; : : : ; li denotes the jth
sample in the ith class. If the prior probabilities of the L
classes are equal, then S�

b and S�
w can be expressed as

S�
b =

∑
i=1;:::;L

(m�
i − m�

0 )(m�
i − m�

0 )′; (2)

S�
w =

∑
i=1;:::;L

∑
j=1;:::;li

(�(xi
j) − m�

i )(�(xi
j) − m�

i )′; (3)

where m�
i =1=li

∑
j=1; :::; li

�(xi
j); m0 =1=L

∑
i=1; :::; L m�

i . The
theory of reproducing kernels says that the discriminant vec-
tors of feature space are in the space spanned by all the
training samples [1]. So, w can be formulated by

w =
∑

i=1;:::;l

�i�(xi): (4)

Now we substitute kernel function k(xi; xj) for dot produc-
tion �(xi) · �(xj). If Mi ∈Rl×1 and N ∈Rl×l are de6ned as

(Mi)j = (1=li)
∑

k=1;:::;li

k(xj; x
i
k);

j = 1; 2; : : : ; l; i = 1; 2; : : : ; L; (5)

N =
∑

i=1;:::;L

Ki(I − Ili )K
′
i ; (6)

where I is the identity, Ili is a li × li matrix and each el-
ement is 1=li; Ki is a l × li matrix, (Kn)i; j = k(xi; xn

j ); i =
1; 2; : : : ; l; j = 1; 2; : : : ; ln; n = 1; 2; : : : ; L, Fisher criterion in
the feature space will be expressed by [1]

J (�) =
�′M�
�′N�

; (7)

where � = [�1 · · · �l]′; M =
∑

i=1; :::; L (Mi − M0)(Mi −
M0)′; M0 = (1=L)

∑
i=1; :::; L Mi. Consequently, the problem

for obtaining w is transformed into one for solving eigen-
vectors �, corresponding to nonzero eigenvalues of the
eigenequation (8).

M� = �N�: (8)

3. The reformative algorithm on kernel Fisher
discriminant analysis

In feature space discriminant vector can be approximated
by some linear combination of “signi6cant nodes”, conse-
quently, very e$cient algorithms for kernel Fisher discrimi-
nant analysis are developed [2,3]. However, these algorithms
are only for two-class problems. In this section we focus on
multi-class problems and developing the corresponding al-
gorithm, and the key is to develop the procedure to select
“signi6cant nodes”.

According to Fisher’s idea, the larger some nonzero
eigenvalue of Eq. (8) is, the better the corresponding eigen-
vector is to be taken as discriminant vector. Generally, for
multi-class problems with more than two classes, Eq. (8)
corresponds to more than one nonzero eigenvalues. So, we
select “signi6cant nodes” according to the summation of
nonzero eigenvalues. In other words, for di9erent training
samples we compute corresponding summation of nonzero
eigenvalues of Eq. (8), and take the training samples,
corresponding to the maximum summation, as “signi6-
cant nodes”. Based on the rule, the following procedure is
proposed.

3.1. Algorithm for selecting “signi4cant nodes”

3.1.1. Selecting the 4rst “signi4cant node”
For each training sample xi; i = 1; 2; : : : ; l, corresponding

Mi; Ki; M and N are computed. Obviously, here Mi;M and
N are all scalars, for example Mj = 1=lj

∑
k=1; :::; lj

k(xi; x
j
k).

Consequently �i = M=N is computed. After the above com-
putation is accomplished for all the training samples, the
sample corresponding to the maximum �i is taken as the 6rst
“signi6cant node”, denoted by xo

1.

3.1.2. Selecting the sth “signi4cant node”
Suppose s − 1 samples have been selected as “signi6cant

nodes”, denoted by xo
1 ; x

o
2 ; : : : ; x

o
s−1, then selecting for the sth

“signi6cant node” will be carried out according to the fol-
lowing algorithm. Each sample x; x ∈ {xi; i = 1; 2; : : : ; l}
and x �∈ {x0

j ; j = 1; 2; : : : ; s − 1} will be considered in the
procedure. When a new sample x is being considered, cor-
responding Mi; Ki can be formulated as follows:

Mi =

[
M 0

i

ai

]
; Ki =

[
K0

i

ki
new

]
; i = 1; 2; : : : ; L; (9)

where ai =1=li
∑

j=1; :::; li
k(x; xi

j); k
i
new =[k(x; xi

1); k(x; xi
2) · · ·

k(x; xi
li )]; M 0

i ; K
0
i are Mi and Ki corresponding to the pre-

vious s − 1 signi6cant nodes”, respectively. If the inverse
matrix of N exists, Eq. (8) will be identical to eigenequation
N−1M�=��. To avoid the problem that solving the inverse
matrix of singular matrix, eigenequation (N +�I)−1M�=��
is often adopted instead, where � is a positive constant. We
de6ne N1, as

N1 =
∑

i=1;:::;L

Ki(I − Ili )K
′
i + �I (10)

then we rewrite N1 as

N1 =

[
N 0

1 u

u′ �

]
; (11)

where � =
∑

i=1; :::; L ki
new(I − Ili )(k

i
new)′ + �; u =

∑
i=1; :::; L

K0
i (I−Ili )(k

i
new)′; N 0

1 is the N1 corresponding to the previous
s − 1 “signi6cant nodes”. N1 is symmetric, so N−1

1 can be
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obtained by the formulation [2]

N−1
1 =




(N 0
1 )−1 +

1
�

zz′ − 1
�

z

− 1
�

z′ 1
�


 ; (12)

where z = (N 0
1 )−1u; � = � − u′z. The recursive algorithm,

formulated by Eq. (12), will make the computation for N−1
1

easier, in comparison with the direct computation for the
inverse matrix of N1. Then N−1

1 M and its summation of
nonzero eigenvalues, �sum(x), are calculated. After the above
process has been done for each sample x, the sample cor-
responding to the maximum �sum(x), denoted by !s, is se-
lected as the sth “signi6cant node”. The corresponding ma-
trix N−1

1 M is recorded and denoted by Qs.

3.1.3. The termination on selecting “signi4cant nodes”
Selecting for “signi6cant node” is not terminated until

|!s −!s−1|¡$, where $ is a constant. Suppose the number
of the “signi6cant nodes” is r, correspondingly the “signif-
icant nodes” are denoted by xo

1 ; xo
2 ; : : : ; x

o
r , respectively. All

the eigenvectors �1; �2; : : : ; �p, corresponding to the nonzero
eigenvalues of Qr (suppose that there are p nonzero eigen-
values), must be solved.

3.2. Classi4cation based on “signi4cant nodes”

After “signi6cant nodes” are found out, classi6cation for
test samples can be carried out based on them. For a test
sample xt ; fo

m(xt) is de6ned as

fo
m(xt) =

r∑
i=1

�m
i k(xt ; x

o
i ); m = 1; 2; : : : ; p; (13)

where �m
i is the ith component of eigenvector �m. Further-

more, we de6ne fo
im as

fo
im =

1
li

li∑
j=1

r∑
n=1

�m
n k(xo

n; x
i
j);

i = 1; 2; : : : ; L; m = 1; 2; : : : ; p (14)

and de6ne the following vectors F = [fo
1 (xt) fo

2 (xt) · · ·
fo

p(xt)]; Fo
i =[fo

i1 fo
i2 · · · fo

ip]; i=1; 2; : : : ; L. The minimum
distance classi6er is adopted and classifying is performed
based on the distances between F and every Fo

i , i.e., if Fo
j

is the nearest to F , then xt is classi6ed into the jth class.
The algorithm presented in this section is suitable for both

two-class problems and multi-class problems with more than
two classes. On the other hand, the reformative algorithm
for kernel Fisher discriminant analysis proposed in Ref. [2]
is only for two-class problems.

Table 1
Experiment result on Yale Face Database

NaOPve kernel The reformative
Fisher discrimi- algorithm
nant analysis

Erroneous classi6cation rate 12.2% 11.1%
The number of training
samples or “signi6cant nodes” 75 46(61%)

4. Experiments

In the following experiments, the naOPve Fisher dis-
criminant analysis also carries out classi6cation using the
minimum distance classi6er. Di9erent from the reforma-
tive algorithm, in the naOPve Fisher discriminant analy-
sis one test sample is classi6ed based on all the kernel
functions between the total training samples and the test
sample.

4.1. Experiment result on Yale Face Database

Yale Face Database consists of 15 subjects. Each sub-
ject corresponds to 11 gray images, and di9erent im-
ages vary much in expression and lighting condition.
The 6rst 6ve images of each subject are taken as train-
ing samples, while the others are taken as test samples.
Every image is treated as a vector and Gaussian ker-
nel in the form of k(x; y) = exp(−‖x − y‖2=(2+2)) is
adopted, +2 is set 1:0e + 8. In the experiment and the
next one � is set 0.001. Table 1 indicates that the er-
roneous classi6cation rates achieved by the naOPve ker-
nel Fisher discriminant analysis and the reformative
algorithm are 12.2% and 11.1%, respectively, while
the reformative algorithm classi6ers test samples only
based on 46 “signi6cant nodes”, 61% of the total train-
ing samples. In other words, in the classi6cation stage
the computational time of the reformative algorithm
is much less than the naOPve kernel Fisher discriminant
analysis.

4.2. Experiment on CMU mask images

CMU-Pittsburgh AU-Coded Face Expression Database
[4] is a data set including happy, joy, angry, sad, sur-
prise and disgusted expression face images. By using
spatial adaptive triangulation technique based on local
Gabor 6lters [5], 463 facial expression mask images
are obtained. The 6rst 210 mask images in the CMU
database are taken as training samples, while the others
are for testing. The solution of each image is 60 × 70.
In the experiment kernel function k(xi; xj) = (xi · xj)2

is adopted and each image is also treated as a vec-
tor. Each gray-value is divided by 6000, so that matri-
ces M and N corresponds to low condition numbers.
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Table 2
Experiment result on CMU Face Expression Database

NaOPve kernel The reformative
Fisher discrimi- algorithm
nant analysis

Erroneous classi6cation rate 11.5% 12.3%
The number of training
samples or “signi6cant nodes” 210 62(29.5%)

The experiment result given in Table 2 shows that the er-
roneous classi6cation rates achieved by the naOPve kernel
Fisher discriminant analysis and the reformative algo-
rithm are 11.5% and 12.3%, respectively, although the
reformative algorithm classi6ers test samples only based
on 62 “signi6cant nodes”, 29.5% of the total training
samples.
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